### Andrew Aubry Advisers: Dr. In Soo Ahn, Dr. Yufeng Lu GPS AND INERTIAL NAVIGATION SYSTEM

## **Presentation Outline**

- Project Summary
- Navigation Systems Introduction
- Kalman Filter
- System Block Diagram
- Functional Description
- Functional Requirements
- Current Work
- Schedule of Tasks
- References

# **Project Summary**

 Utilizing multiple navigation systems to compliment individual system weaknesses

#### GPS

- Highly accurate position and velocity information
- Lower update frequency (~1Hz)
- Relies on external signal

#### INS

- Provides position, velocity, attitude, and heading information
- Higher update frequency (~100Hz)
- Self contained system
- Positioning error based on sensor error and drift

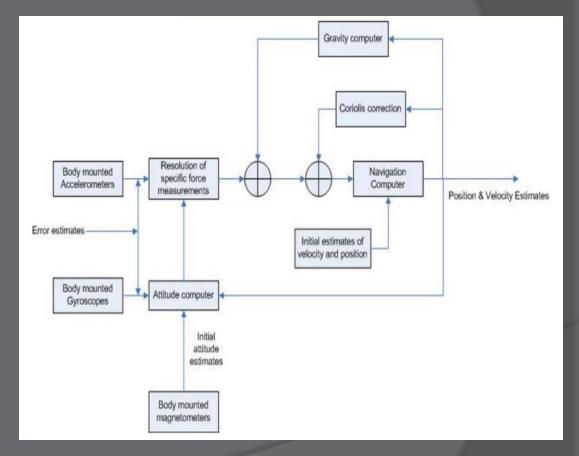
### Navigation Systems Introduction

#### Two systems

- GPS Global Positioning System
- INS Inertial Navigation System

#### GPS

- Constellation of 32 transmission satellites
- Position solution based on signal travel time from satellites


## **Inertial Navigation Systems**

- Employs dead reckoning for navigation solution
- Consists of the inertial measurement unit (IMU) and the computational component
- IMUs will generally contain:
  - Accelerometers linear accelerations
  - Gyroscopes angular rates
- Focus on Strapdown INS for this project

## Strapdown INS

 IMU is fixed to the body in a known orientation

 Allows for translation into different navigation frames



## **Computational Component**

- Perform integrations of accelerometer and gyroscope measurements
- Additional computation of local gravity, corialis effect, etc.
- Outputs position, velocity, and attitude

## Inertial Measurement Unit

- Previous IMUs were 'floating' units
- Most current IMUs contain:
  - Accelerometers
  - Gyroscopes
  - Magnetometers
- MEMS based IMU
  - Smaller package
  - Cheaper
  - Not as robust

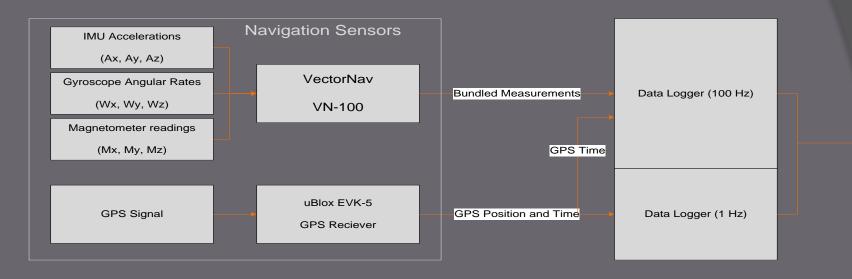


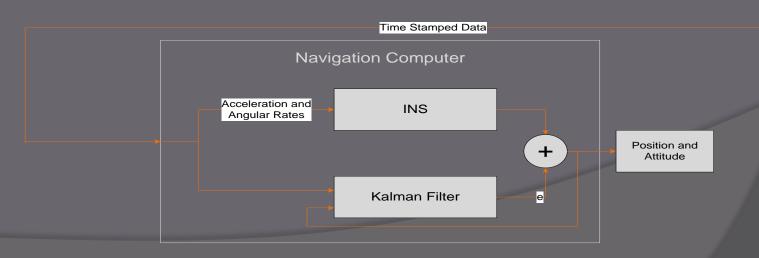
# INS Error

- Error Sources
  - Noise
  - Sensor biases
  - Sensor drift
  - IMU misalignment
- INS Integrates accelerations
  - Drift error accumulates according to

$$\frac{1}{2}e_at^2$$

•  $e_a$  is the sensor bias


# Kalman Filter


- Linear quadratic estimator
  - Estimation instantaneous state
  - System disturbed by white noise
  - Linearly related measurements
- Recursive algorithm
  - Predict
  - Evaluate
  - Update
  - Estimate

## Types of Kalman Filter

- Linear systems
  - Basic Kalman filter
- Non-linear systems
  - Extended Kalman filter
  - Unscented Kalman filter
    - High level of non-linearity in state transition and system model

## System Block Diagram





## **Functional Description**

- Fusion of GPS and INS
- Provide short and long term navigation stability
- Provide navigation through GPS outage
- Kalman filtering for state estimation
- Three major components
  - Navigation sensors
  - Data acquisition
  - Navigation computer

## **Functional Requirements**

#### Overall system

- Position accuracy within 2 meters
- Maintain accuracy through 3 minute GPS outage
- Navigation sensors
  - IMU: Vectornav VN-100
  - GPS: Ublox EVK-5
- Data logger
  - UART communication
  - Capable of accepting IMU data at 100 Hz

## **Functional Requirements**

#### Data logger (continued)

- Data string shall be amended with timestamp
- Internal counter synchronized with GPS PPS
- Removable storage medium (SD card)
- Navigation Computer
  - Post processing of data in MATLAB
  - Minimum of 12 states for Kalman filter

# Current Work

#### Data logger

- Possible solutions
  - Custom VHDL based logger
  - Commercial off the shelf logger
- VHDL
  - Provides simultaneous logging from 2 UART ports
  - Data synched through use of GPS PPS
  - Complex and requires large amount of development time

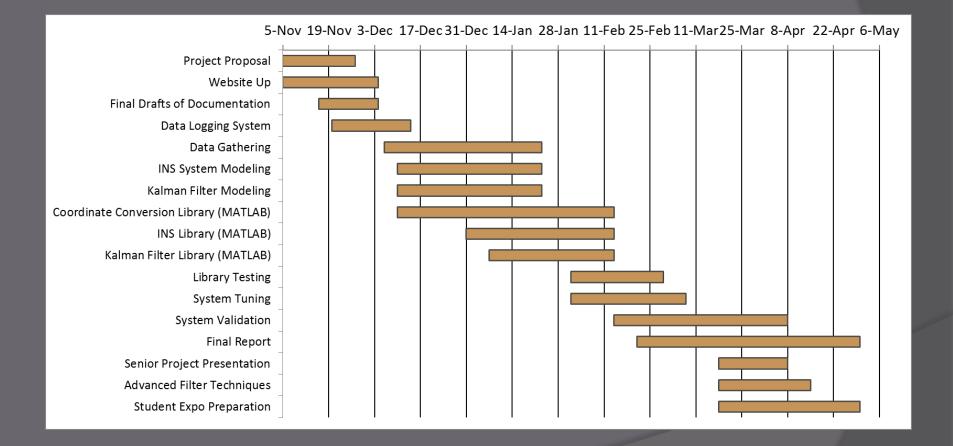
## Current Work

- Data logger
  - Logmatic V2 data logger
  - Commercial logger
    - No logger had dual UART communication
    - Use two cheap loggers and synchronize
  - Internal count on separate loggers synchronized using GPS PPS
  - IMU data and GPS data tagged with count value
  - Data correlation achieved in post processing

# Current Work

### 

- Sensor characterization
- Measure inherent sensor noise
- Measure sensor bias


### INS

Algorithm development for linear model

# Future Work

- IMU
  - State space model of error sources
- INS
  - Full dimensional system
  - Correction computations for Coriolis effect
  - Attitude computations
- Integration
  - Loosely coupled system
  - Kalman filter design

## Schedule



### References

- D.H. Titterton and J.L. Weston, *Strapdown Inertial Navigation Technology, 2<sup>nd</sup> Editon*, The Institution of Electrical Engineers, 2004
- Li, Y., Mumford, P., and Rizos. C. Seamless Navigation through GPS Outages – A Low-cost GPS/INS Solution. Inside GNSS, July/August, 2008, pp.39-45.
- Mumford, Peter, Y. Li, J. Wang, and W. Ding. A Timesynchronisation Device for Tightly Coupled GPS/INS Integration. Li, Y., Mumford, P., and Rizos. C. Seamless Navigation through GPS Outages – A Low-cost GPS/INS Solution. Inside GNSS, July/August, 2008, Pp.39-45., n.d. Web. 25 Oct. 2012.
- Grewal, Mohinder S., and Angus P. Andrews. Kalman Filtering: Theory and Practice Using MATLAB. Hoboken, NJ: Wiley, 2008. Print.
- Lin, Ching-Fang. *Modern Navigation, Guidance, and Control Processing*. Englewood Cliffs, NJ: Prentice Hall, 1991. Print.
- Lawrence, Anthony. Modern Inertial Technology: Navigation, Guidance, and Control. New York: Springer, 1998. Print.